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ARTICLE INFO ABSTRACT

Keywords: Classification of viruses into their taxonomic ranks (e.g., order, family, and genus) provides a framework to
Virus organize an abundant population of viruses. Next-generation metagenomic sequencing technologies lead to a
Taxonomy o rapid increase in generating sequencing data of viruses which require bioinformatics tools to analyze the tax-
Hierarchical classification . . . . o .

Kmer onomy. Many metagenomic taxonomy classifiers have been developed to study microbiomes, but it is particu-
Genome larly challenging to assign the taxonomy of diverse virus sequences and there is a growing need for dedicated

methods to be developed that are optimized to classify virus sequences into their taxa. For taxonomic classifi-
cation of viruses from metagenomic sequences, we developed VirusTaxo using diverse (e.g., 402 DNA and 280
RNA) genera of viruses. VirusTaxo has an average accuracy of 93% at genus level prediction in DNA and RNA
viruses. VirusTaxo outperformed existing taxonomic classifiers of viruses where it assigned taxonomy of a larger
fraction of metagenomic contigs compared to other methods. Benchmarking of VirusTaxo on a collection of
SARS-CoV-2 sequencing libraries and metavirome datasets suggests that VirusTaxo can characterize virus tax-

onomy from highly diverse contigs and provide a reliable decision on the taxonomy of viruses.

1. Introduction

The virus genome consists of either DNA or RNA and is broadly
classified as DNA virus or RNA virus [1] respectively. Viruses are clas-
sified into taxonomic ranks which play important roles in finding their
source, genetic relationship, ancestry, and origin. Taxonomic classifi-
cation of viruses ensures the consistent and accurate classification of
novel viruses [2]. Conventionally, several phenotypic properties of vi-
ruses including molecular composition, structure, proteins, host range,
and pathogenicity [3] are used to classify taxonomic ranks. Recently,
strong relationships between genome sequence and taxonomic assign-
ments of viruses have been reported at family level and inter-family
groupings into orders [4]. With the advent of high-throughput
sequencing technologies, more viruses have been characterized solely
from sequencing data than using phenotypic properties [3]. These newly
sequenced viruses are required to be assigned to their taxonomic ranks
using automated computational tools. Comparisons of virus sequences
using pairwise sequence similarity and phylogenetic relationships have
become the major tool to define taxonomic ranks of novel viruses [5,6].
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Family of the novel virus SARS-CoV-2 that caused the recent pandemic
in 2020 was identified by sequencing and comparing its genome
sequence with known virus sequences [7]. Most of the existing compu-
tational methods to identify virus taxonomy are based on similarities in
genome structure and organization, the presence of homologous gene
and protein sequences [8,9,10,11]. Homology based methods require
higher computational resources, might produce unreliable alignment for
novel viral species and often require human interpretations [12].

For classification of the virus sequences several alignment free su-
pervised machine learning classifiers have been proposed e.g., CASTOR
[13], VirFinder [14], DeepVirFinder [15] etc. However, the existing
tools notably do not predict hierarchical taxonomic ranks from viral
sequences across the diverse virus taxa. These methods were bench-
marked on limited datasets of certain well characterized virus families.
CASTOR used the features of restriction fragment length polymorphism
to train the machine learning models in three virus families. DeepVir-
Finder uses a convolutional neural network that learns from viral
genomic signatures to classify virus sequences from non-virus se-
quences. VirFinder uses k-mer (i.e., DNA words of length k) frequency
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features to train the model using a logistic regression model to
discriminate virus sequences. For the classification of short meta-
genomic reads or contigs into the microbial taxa including viruses, k-
mer feature is considered as core in some proposed classifiers e.g.,
Kraken [16], Kraken2 [17], KrakenUniq [18], CLARK [19], CLARK-S
[20] and MetaPhlAn [21]. MetaPhlAn uses clade-specific marker
genes to assign metagenomic reads to the clades and CLARK uses
discriminative k-mers of target sequences e.g., genus-level sequences.
Similar to CLARK, we used enrichment of discriminative k-mers to
classify taxonomic ranks of viruses using whole genome sequence or
contigs in VirusTaxo during hierarchical training. K-mer extraction from
virus sequences does not require prior knowledge of sequence homology
and coding or non-coding regions at the gene level. Therefore, k-mer
based approaches could be more effective at detecting taxonomy of
novel viruses that are distantly related to the known virus sequences.

Sequencing of virus genomes has become an essential tool in clinical
research, molecular epidemiology and evolutionary genomics. Meta-
genomic or metavirome sequencing contains sequences of novel or
poorly characterized virus genomes [22]. Unassigned virus sequences
are required to be classified accurately to their taxonomic ranks and
such taxonomic assignment can be done from their sequences alone [4].
Currently, there is a lack of dedicated bioinformatics tools that are
optimized for DNA or RNA viruses to assign virus taxonomy from se-
quences. Here we have developed VirusTaxo which makes decisions
based on k-mer overlap (i.e., exact sequence match) of a given sequence
with discriminative sets (mutually exclusive sets) of k-mers of known
virus genera. VirusTaxo was trained on 6950 virus genomes that
encompass 129 families, and 682 genera of DNA and RNA viruses which
might help to discover the taxa of uncharacterized viruses that are
related to known virus genera. VirusTaxo outperformed other state-of-
the-art machine learning methods to accurately assign taxonomic
ranks in both DNA and RNA viruses. VirusTaxo has been benchmarked
against CLARK [19], Kraken2 [17] and DeepVirFinder [15] to classify
virus sequences from metagenomic datasets and outperformed in terms
of detecting higher number of viruses in diverse genera. VirusTaxo was
applied on 6176 whole and partial genome sequences of SARS-CoV-2
and was able to predict its taxonomy accurately in all cases. The
source code of VirusTaxo is publicly available to create and train a
classifier on labeled virus sequences. A web application of VirusTaxo is
also available for users to predict the taxonomic rank of viruses from
genome sequence or contig.
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Fig. 1. Multi-class hierarchical classification
model. Example of a hierarchical structure of
virus taxonomic ranks. Classifier(s) are
added at each level of taxonomic ranks. To
build the VirusTaxo models, k-mers are
extracted from the genomes of each class.
Unique k-mers are then indexed and stored
in a database to find the k-mer overlap with
the query sequence. To measure the confi-
dence of prediction, VirusTaxo provides a
ranking of genus prediction using softmax
probability and entropy scores (see
C-5 methods).
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2. Results
2.1. Classification of taxonomic ranks of viruses using VirusTaxo

We trained VirusTaxo using DNA and RNA virus genomes to predict
their hierarchical taxonomic ranks into order, family and genus. Total
4421 DNA and 2529 RNA virus genomes were used to train the Viru-
sTaxo models that belong to 402 DNA and 280 RNA virus genera
(Supplementary file). For the hierarchical classification of virus taxo-
nomic ranks, we trained classifiers at each layer of the taxonomic tree.
(Fig. 1) illustrates an example of total 8 classifiers that were trained for 2
orders, 5 families with 17 genera at three taxonomic ranks. For selecting
a classification method to train the VirusTaxo models, we benchmarked
the accuracy of k-mer enrichment method used in CLARK along with
random forest, gradient boosting, multilayer perceptron, k-nearest
neighbors. During method selection, we used a smaller pilot dataset
randomly subsampled from the entire RefSeq complete virus genomes
(see method) and the pilot dataset allowed us to expedite the bench-
marking of methods and parameters using lower computational re-
sources. In both DNA and RNA virus datasets, k-mer enrichment
outperformed other methods at all taxonomic ranks (e.g., order, family,
and genus) whereas k-nearest neighbors and gradient boosting showed
the lowest accuracies in DNA and RNA models respectively (Table S1).
For the DNA dataset, k-mer enrichment showed on average 1% (order),
6% (family), and 16% (genus) improvement over other four methods.
For RNA datasets, k-mer enrichment showed an average of 5.5% (order),
13% (family), and 27% (genus) improvement over other methods. The
accuracies of all methods we have tested are relatively lower in RNA
dataset compared to DNA dataset. On average RNA virus genome is 5
times smaller than DNA virus and has 43% (2529/4421) less number of
species genomes available compared to DNA virus. Potentially for those
reasons, higher accuracies could not be achieved in RNA models than
DNA models across all the methods. Therefore, we selected the k-mer
enrichment method in VirusTaxo with additional modifications such as
using it hierarchically, optimizing k-mer length, applying entropy cut-
off, and reducing database size for virus sequence classification.

2.2. Benchmarking of VirusTaxo parameters

DNA and RNA virus genomes are different in their genome sizes and
sequence compositions [1]. The median size of the DNA and RNA virus
genomes are 40,562 bp and 4556 bp respectively. We extracted k-mers
using different ranges of k-mer lengths e.g., 17-26 bp and 13-22 bp for
DNA and RNA viruses respectively and benchmarked the accuracy of
models for different k-mer lengths using the pilot dataset. The accuracies
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a DNA RNA Fig. 2. Accuracy of VirusTaxo for order,
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of DNA and RNA models varied at different k-mer lengths. K-mer lengths
of 21-23 bp showed the highest accuracies in order (99.57%), family
(98.27%), and genus (94.81%) level in the DNA model (Fig. 2a). At the
family level, the accuracies did not change between the k-mer lengths of
20-26 bp. For the RNA model, k-mer length of 17 bp provided the
maximum accuracies where the accuracies fluctuated with different k-
mer lengths (Fig. 2a). This suggests for a given dataset, k-mer length
determines the number of distinct genomic k-mers that will be the most
discriminative. Our analysis shows that with the increase of k-mer
length accuracy increases and after a point, accuracy starts to decrease.
At a fixed k-mer length, the accuracies also reduced with the increase of
minimum frequency threshold (MFT) of k-mers in both models where
MFT value of 1 gave the highest accuracies (Fig. 2b) (see methods).
This is suggesting that unique k-mers in each class contribute signifi-
cantly to discriminate between classes. Using the pilot dataset, we tested

the accuracies of DNA and RNA models to predict order, family, and
genus by using test datasets that contain one species genome from each
genus. From the pilot dataset, 231 DNA and 142 RNA genomes were
randomly selected from each genus to generate test datasets and we
repeated the testing process 10 times. The average accuracies were 99%
(order), 98% (family) and 95% (genus) for the DNA viruses and 97%
(order), 96% (family) and 82% (genus) for the RNA viruses (Fig. 2c).
Because of fewer branches and larger sample sizes in the higher taxo-
nomic levels, order level accuracies were highest in both models and the
accuracies dropped gradually from order to genus level. To build the
final prediction models using the entire RefSeq complete virus genomes
(RNA = 2529; DNA = 4421), we used k-mer lengths of 21 bp (DNA vi-
ruses), 17 bp (RNA viruses) and 20 bp (combining DNA and RNA vi-
ruses) with MFT value of 1 using the entire dataset (see methods). Lone
taxonomic ranks with only one order, family or genus but with more
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Table 1
Virus sequences detected by different methods in metagenomic data.

Genomics 114 (2022) 110414

Libraries # contigs VirusTaxo CLARK (virus Kraken2 (MiniKraken2 Kraken2 (virus DeepVirFinder Overlap between VirusTaxo and
db) db) db) (DVF) DVF
SRR10281034 122,545 39,856 1268 (1.03%) 18 (0.01%) 117 (0.10%) 38,652 (31.54%) 10,232
(32.52%)
SRR10281038 100,894 35,713 (35.4%) 773 (0.77%) 42 (0.04%) 522 (0.52%) 33,231 (32.94%) 13,105
SRR12756394 196,745 55,874 (28.4%) 746 (0.38%) 115 (0.06%) 519 (0.26%) 66,548 (33.82%) 21,750
SRR10971381 23,720 5927 (24.99%) 51 (0.22%) 5 (0.02%) 47 (0.20%) 7486 (31.56%) 1806

Metagenomic contigs are classified using different methods where db means the database.

Table 2
Computational performance of VirusTaxo and other tools.

Tools Database size Peak RAM usage Running time
VirusTaxo 4.6 GB 24.5 GB 4 m 29.423 s
Kraken2 (MiniKraken2) 8 GB 5.9 GB 0 m 9.600 s
Kraken2 (virus) 496.5 MB 3.1 GB 0 m 8.989 s
CLARK 79.1 GB 13.8 GB 0m 39.458 s
DeepVirFinder Null 3.2GB 1086 m 8.795 s

Metavirome dataset (SRR10281034) containing 122,545 contigs was used for
benchmarking computational performance.

than one species genomes were also included for the genus level pre-
dictions. The singletons with one species genome per genus were
removed. VirusTaxo estimates the specificity of prediction using
normalized entropy of probability distribution across taxonomic ranks.
Higher entropy (>0.5) is considered as undetected and lower entropy
(<0.5) is used to provide level of certainty at the genus level prediction.
In the final prediction models, accuracy increases with entire RefSeq
data, 1.4% increase in DNA and 8.38% in RNA model compared to the
models trained using pilot data because of including more genomes in
the training. The final model was trained on 402 DNA and 280 RNA
virus genera and have an average accuracy of 90.38% (RNA), 96.2%
(DNA) and 92.5% (DNA and RNA) where on average 11.3% of sequences
remained undetected. Average accuracy for each model was calculated
by repeating the training (with 80% of sequences) and testing (with 20%
of sequences) process five times.

2.3. Benchmarking of VirusTaxo using metagenomic datasets

We predicted the accuracies of VirusTaxo, CLARK and Kraken2 using
three metavirome (SRR10281034, SRR10281038, SRR12756394) [23]
and a metatranscriptome (SRR10971381) [6]. We assembled the met-
agenomic reads using MEGAHIT [24] following quality trimming by
Trimmomatic [25]. The resultant metagenomic contigs were used to
classify virus sequences by different methods (Table 1).

VirusTaxo’s combined database with DNA and RNA sequences
assigned taxonomic ranks of >30% of the metagenomic contigs which is
an about 100-fold increase in assigning taxonomy compared to CLARK
(0.60%), Kraken2 with MiniKraken2 database (0.033%), and Kraken2
with virus database (0.27%) (Table 1). DeepVirFinder does not classify
taxonomy but predicts virus sequences. DeepVirFinder identified >30%
of the metagenomic contigs as virus sequences across four metagenomic
libraries. A significant portion of the sequences classified by VirusTaxo
was also predicted as virus sequence in DeepVirFinder (VirusTaxo =
137,370, DeepVirFinder = 145,917 and intersect = 46,893; Fisher’s
exact test p-value = 2.08853e-33). This is suggesting that a large pro-
portion of virus sequences were not assigned to their taxonomy by
CLARK and Kraken2 despite using their latest database (see Methods).
By default, CLARK (k-mer = 31 bp) and Kraken2 (k-mer = 35 bp) use
larger k-mer sizes whereas VirusTaxo used an optimized k-mer length of
20 bp for its combined model with RNA and DNA sequences. VirusTaxo
assigned taxonomic ranks of significantly higher numbers of the contigs
from metaviromes and metatranscriptomes.

2.4. Benchmarking of computational performance of VirusTaxo

For calculating the Central Processing Unit (CPU) time consumption
and Random Access Memory (RAM) usage, we used SRR10281034
metavirome library which has 122,545 contigs. We utilized a single
thread on a dedicated computer for all the methods (see Methods).
Program running time is represented in wallclock CPU seconds
(Table 2). Compared to CLARK and Kraken2, VirusTaxo has a smaller
database size of 4.6 GB but requires higher running time and RAM usage.
DeepVirFinder took significantly much longer time (18 h) to finish the
prediction.

2.5. Predicting hierarchial taxonomy of SARS-CoV-2 from metagenomic
assembly using VirusTaxo

SARS-CoV-2 belongs to Betacoronavirus genus, Coronaviridae family
and Nidovirales order. (Fig. 3a) illustrated the taxonomic ranks of SARS-
CoV-2 and its hierarchical taxonomic classification by VirusTaxo. The
reference genome (MN908947.3) of SARS-CoV-2 was generated from
SRR10971381 sequencing library and assembled by MEGAHIT [24] to
identify the family of this novel virus that caused the recent pandemic
[6]. We downloaded the SRR10971381 library and assembled it with
MEGAHIT using the approach described here [6]. The longest contig
generated by MEGAHIT was 29,868 bp long and was used as a query
sequence in VirusTaxo. To treat SARS-CoV-2 as a novel virus species, we
removed its genome from our training dataset to train the RNA model of
VirusTaxo. VirusTaxo model predicted the 29,868 bp MEGAHIT contig
belongs to Nidovirales order, Coronaviridae family, Betacoronavirus genus
(Rank: 1, Entropy: 0.07, Softmax probability: 0.95) (Fig. 3b). Accurate
assignment of order, family and the ranking of the closest genus by
VirusTaxo indicating that the whole process of identifying taxonomy of
novel or uncharacterized viruses can be automated without the need for
sequence alignment and human interpretation of alignment data given
that close relatives of the uncharacterized viruses are present in the
database.

2.6. The effect of contig length in VirusTaxo classification

We obtained 6176 de novo assemblies of SARS-CoV-2 genome that
were assembled using eight different assemblers [26]. We used BLASTn
[27] against a database made of MN908947.3 sequence to obtain the
SARS-CoV-2 contigs and selected the largest contig per assembly. These
sequences contain full and partial genome assemblies and have diverse
variants due to differences in virus samples and assemblers. This dataset
contains partial genome assemblies with minimum contig length of 30
bp and 4536 assemblies had <75% of the genome constructed (Fig. 3c).
Despite the partial genomes provided and variants present in those se-
quences, VirusTaxo RNA model correctly predicted Nidovirales as the
order, Coronaviridae as the family, and Betacoronavirus as the genus for
all of the assemblies. In comparison to VirusTaxo, CLARK detected
99.77% (6162/6176) of the contigs and Kraken2 with MiniKraken2
database detected 3521 (57.01%), and Kraken2 with virus database
detected 6168 (99.87%) contigs as Betacoronavirus. Thus VirusTaxo,
CLARK, and Kraken2 that were trained on the virus genomes detected
the Betacoronavirus contigs and were not affected by contig lengths. For
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the prediction of the taxonomic ranks online using VirusTaxo, a web
application has been provided with trained models for virus classifica-
tion (Fig. 3d).

3. Discussion

The International Committee on Taxonomy of Viruses (ICTV) clas-
sifies viruses into their taxonomic ranks primarily based on phenotypic
properties [28]. However, the ICTV has continually updated its
approach to virus taxonomy through incorporation of newer technolo-
gies including genome sequence as a property needed for classification
[29]. Genomic sequences of viruses show their evolutionary relation-
ships and provide an opportunity to detect virus taxonomy especially for
those that lack phenotypic data [3]. Developing and utilizing automated
computational methods will facilitate the taxonomic assignment of
novel or uncharacterized viruses efficiently and will open the possibility
to discover new taxa solely based on the genomic sequences. Supervised
machine learning methods can learn from the patterns of existing virus

genomes and their taxonomic ranks to assign taxa of novel viruses
automatically. Here we proposed VirusTaxo, a machine learning archi-
tecture to classify taxonomic ranks (e.g., order, family and genus) using
virus genome. Virus taxonomic tree is hierarchically structured with
taxonomic ranks at different levels which is challenging for the classi-
fiers to maintain the accuracy towards the low-level taxa. K-mer features
of DNA have been shown to contain information about sequence
composition and sequence evolution [30,31]. Using k-mer features
VirusTaxo obtained >93% overall accuracy in classification at each
taxonomic rank. We have shown that RNA and DNA virus classification
parameters (e.g., k-mer length) could be different because these two
sequence sets are different in their size and composition. Viruses have
some exceptions in taxonomic classification by genome sequence and
are not always congruent between phenotypic and evolutionary ap-
proaches [28]. Despite the challenges in classifying viruses from
genome, VirusTaxo showed significant improvement in predicting
smaller contigs and classifying taxonomy of more virus sequences from
metagenomic datasets compared to other state-of-the-art methods e.g.,
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Table 3
Summary of RNA and DNA virus genome sequences.

DNA genomes RNA genomes

Family 46 83
Genus 402 280
Total species genomes 4421 2529

CLARK and Kraken2.

High-throughput sequencing of metagenomes or metaviromes can
identify the true diversity of viruses in a particular environment sample.
Metagenomic sequence assembly creates full or partial genomes of
thousands of new viruses that when classified, will contribute to the
formation of new virus taxa. Large scale metagenomic studies showed
that the vast majority of the identified viruses were unrelated to those in
known viruses [32]. Novel viruses that do not have close relationships at
the genome sequences with existing taxa pose a particular problem to
classify their taxonomic rank using supervised machine learning
methods. In such a scenario, the taxonomic assignment could be arbi-
trary and therefore we introduced probabilistic ranking to assess the
certainty using softmax and entropy scores in VirusTaxo. Since virus
taxonomy evolves with the addition of new viruses, taxonomy classifi-
cation methods can be updated over time with new sequences and their
taxa. With an increased understanding of newer taxa, machine learning
methods can be scaled to learn about those genomes and classify un-
known viruses. Overall, our classification results obtained from meta-
genomic data and SARS-CoV-2 genome assemblies indicate that
VirusTaxo is readily capable of distinguishing between viruses
belonging to different classes of taxa.

Genomics 114 (2022) 110414

4. Methods
4.1. Datasets

4.1.1. Pilot dataset

RefSeq genomes of all RNA and DNA viruses were downloaded from
the NCBI virus database [33]. Taxonomic classification of the viruses
was obtained from the International Committee on Taxonomy of Vi-
ruses, ICTV Master Species List 2019.v1 release [34]. We chose orders
with at least two families, families with at least two genera, and genera
with at least three species to ensure sufficient genomes for the RNA and
DNA virus classifier models. Pilot dataset contains 2561 DNA and 1480
RNA virus genomes which were used to train the VirusTaxo models that
belong to 231 DNA and 142 RNA virus genera.

4.1.2. Entire RefSeq dataset of viruses

We used all complete virus genomes from NCBI RefSeq consisting of
4421 DNA and 2529 RNA virus genomes. Singletons with one sequence
per genus were removed. The summary of the selected datasets is listed
in (Table 3). The detailed taxonomic information of the viruses used in
the final model is added in the Supplementary file.

4.1.3. Metagenomic datasets

Metavirome (SRR10281034, SRR10281038, SRR12756394) [23],
SARS-CoV-2 metatranscriptome (SRR10971381) [6] datasets were used
in benchmarking with metagenomic classifiers.

4.2. Hierarchical classification architecture of VirusTaxo

VirusTaxo uses a top to bottom approach for the classification of
order, family and genus of a virus sequence. For m and n number of order
and family respectively, there will be m numbers of family classifiers
under respective orders in the 2nd layer and n numbers of genus clas-
sifiers under respective families in the 3rd layer. There will be a total
number of classifiers = 1 + m + n in each model. In addition, taxonomic

1 function Train(dataset, k, MFT)

2 create empty lists of kmer B

3 for each (sequence, class) in dataset do
4 kmers « extract(sequence, k)

5 B[class].add(kmers)

6 end for

7

8 for each class in B do

9 S « Set of unique kmers in B[class]
10 for each kmer in S do

11 if B[class].count(kmer) < MFT then
12 B[class].remove(kmer)

13 end if

14 end for

15 end for

16

17 for each class in B do

18 keep only the kmers in B[class] that don't exist in any other
class

19 end for

20

21 save B
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1 function predict(sequence, model, k)

2 kmers « extract(sequence)

3 maximum_count, prediction <« 0, null
4 for each class in model do

5 count « 0

6 for each kmer in kmers do

7 if kmer in model[class] then
8 count « count + 1

9 end if

10 end for

11 if count > maximum_count then

12 maximum_count, prediction <« count, class
13 end if

14 end for

15 return prediction

ranks with only one order, family or genus were also included for genus
level prediction. We trained the classifiers at different levels of the tree
by utilizing Breadth First Search (BFS) [35] graph traversal algorithm
for both DNA and RNA datasets. (Fig. 1) illustrates an example of hi-
erarchical classification by VirusTaxo where the order classifier (OC) in
the root is classifying the genomes between two orders (e.g., Order-1 and
Order-2). Then all the genomes in an order are split into corresponding
families to train the family level models. Two family classifiers (e.g., FC-
1 and FC-2) that belong to 2 orders classifying 5 families. Similarly, 5
genus classifiers were built to classify the genomes into 17 genera.

4.3. Hierarchical prediction of taxonomic ranks

We pass a genome sequence through the order classifier and we get
the decision for an order. Then we pass it through the family classifier
under the predicted order. Finally to get the genus, we go to the genus
classifier under the predicted family.

4.3.1. Training algorithm

A dataset and two parameters are required to train the VirusTaxo
multi-class classification model. These parameters are k and the mini-
mum frequency threshold (MFT) of k-mers. Here are the training steps:

1. Create empty bags for each class.

2. Iterate over each sequence in the dataset and follow the steps
mentioned below.
a. Generate k-mers by extracting substrings of k bp with k-1 bp

overlaps from the sequence.

b. Add extracted k-mers to a bag in accordance with the class.

3. Discard the k-mers from each bag if the frequencies of the k-mers are
less than MFT.

4. Keep only the k-mers in each bag that don’t occur in any other bag to
build discriminative (mutually exclusive) bags.

5. Save the bags as a model.

Training pseudocode
4.3.2. Prediction algorithm
For a given input sequence, model and k, the following steps are

performed to predict the rank and class.

1. Generate k-mers (same k-mer generation technique that was
described in the training part) from the given input sequence.

2. Count the overlap of k-mers between the input sequence derived k-
mers and bag of k-mers for each class.

3. Predict the corresponding class as an output for which the overlap
count is maximum.

Prediction pseudocode

4.3.3. Determination of confidence level of genus prediction

Firstly, we find the overlap counts of the input sequence with every
genus. Suppose, there are n genus and x_(1), x_(2), ..., x_(n) denote the
overlap count with n genus. We find the probability distribution using x_
(1), x_(2), ..., x_(n) with the help of the softmax function. The formula of
softmax function is given below:

e
plx) Die®

We rank genus according to the descending value of probabilities.
After getting the probability values, we are interested to find how much
of our first ranking is reliable. For this, we calculate normalized entropy
value which ranges within [0.0,1.0]. The formula of normalized entropy
is given value:

normalized entropy = 72. . loga(n)
i= 0g,(n

When the probabilities are more or less equally distributed across
genera, then it is difficult to predict a specific genus. In that scenario, the
normalized entropy value will be close to 1.0. On the other hand, if the
probabilities distribution for one genus is high and for the rest of all are
low, then the entropy value will be close to 0.0.

4.4. Benchmarking of VirusTaxo using metagenomic classifiers

We used CLARK (v1.2.6.1), Kraken2 (v2.1.2) and DeepVirFinder
(v.1) to predict the taxonomy from metagenomics datasets (Table S2).
CLARK was used against the virus database with ‘clarkdb viruses’. For
Kraken2, ‘minikraken2 v2 8GB_201904 UPDATE’ and ‘Viral, 5/17/
2021’ database were used. Those tools were run using default parame-
ters, unless otherwise mentioned. For DeepVirFinder, score > 90 and the
p-value < 0.05 is used to detect virus sequences.

4.5. Benchmarking of machine learning methods

We compared the performances of VirusTaxo with four other algo-
rithms on RNA and DNA virus datasets. We used word2vec encoding
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Table 4

Hyperparameters setup for word2vec training.
Hyperparameters Value
Method (skip-gram / CBOW) Skip-gram
Dimension 300
Learning rate 0.025

Table 5
Hyperparameters for four algorithms used to perform benchmarking.

Algorithm Hyperparameters

Multilayer perceptron Hidden layer: 1

No of nodes in hidden layer: 100
Optimizer: Stochastic gradient descent
Learning rate: 0.01

No of trees: 100

Metric: Gini impurity

Learning rate: 0.01

Loss function: Deviance

K-nearest neighbors K:5

Random forest

Gradient boosting

[36] for transforming genome sequences into vectors. To train two
word2vec models for DNA and RNA datasets, we generated a stream of
k-mers without changing sequence chronology of k-mers from each
genome sequence taking 21 bp and 17 bp k-mer lengths respectively. We
trained word2vec models using fastText [36] using the following
hyperparameters in (Table 4). After completion of word2vec training,
we utilize four algorithms (Multilayer perceptron, Random forest,
Gradient boosting, KNN) one by one in hierarchical classification of RNA
virus and DNA virus. The hyperparameter details of the four algorithms
are in (Table 5). Here we randomly choose one species genome from
each genus to create the test set.

4.6. Analysis of metagenomic data

We have downloaded the Metavirome (SRR10281034,
SRR10281038, SRR12756394), SARS-CoV-2 metatranscriptome
(SRR10971381) reads from NCBI GEO datasets. Sequencing reads were
adaptor and quality trimmed using the Trimmomatic program (v.0.39)
[25]. The remaining reads were assembled de novo using MEGAHIT
(v.1.2.9) with default parameters. The contigs were used to predict virus
taxonomy.

4.7. CPU and RAM usage

We used the same procedure described by [26] to measure CPU time
and peak RAM usage. We used 32 cores (64 threads) to compare tax-
onomy classification tools in a AMD EPYC 7502P 2.5 Ghz, 32 cores, 256
GB RAM.
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