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A B S T R A C T   

Classification of viruses into their taxonomic ranks (e.g., order, family, and genus) provides a framework to 
organize an abundant population of viruses. Next-generation metagenomic sequencing technologies lead to a 
rapid increase in generating sequencing data of viruses which require bioinformatics tools to analyze the tax
onomy. Many metagenomic taxonomy classifiers have been developed to study microbiomes, but it is particu
larly challenging to assign the taxonomy of diverse virus sequences and there is a growing need for dedicated 
methods to be developed that are optimized to classify virus sequences into their taxa. For taxonomic classifi
cation of viruses from metagenomic sequences, we developed VirusTaxo using diverse (e.g., 402 DNA and 280 
RNA) genera of viruses. VirusTaxo has an average accuracy of 93% at genus level prediction in DNA and RNA 
viruses. VirusTaxo outperformed existing taxonomic classifiers of viruses where it assigned taxonomy of a larger 
fraction of metagenomic contigs compared to other methods. Benchmarking of VirusTaxo on a collection of 
SARS-CoV-2 sequencing libraries and metavirome datasets suggests that VirusTaxo can characterize virus tax
onomy from highly diverse contigs and provide a reliable decision on the taxonomy of viruses.   

1. Introduction 

The virus genome consists of either DNA or RNA and is broadly 
classified as DNA virus or RNA virus [1] respectively. Viruses are clas
sified into taxonomic ranks which play important roles in finding their 
source, genetic relationship, ancestry, and origin. Taxonomic classifi
cation of viruses ensures the consistent and accurate classification of 
novel viruses [2]. Conventionally, several phenotypic properties of vi
ruses including molecular composition, structure, proteins, host range, 
and pathogenicity [3] are used to classify taxonomic ranks. Recently, 
strong relationships between genome sequence and taxonomic assign
ments of viruses have been reported at family level and inter-family 
groupings into orders [4]. With the advent of high-throughput 
sequencing technologies, more viruses have been characterized solely 
from sequencing data than using phenotypic properties [3]. These newly 
sequenced viruses are required to be assigned to their taxonomic ranks 
using automated computational tools. Comparisons of virus sequences 
using pairwise sequence similarity and phylogenetic relationships have 
become the major tool to define taxonomic ranks of novel viruses [5,6]. 

Family of the novel virus SARS-CoV-2 that caused the recent pandemic 
in 2020 was identified by sequencing and comparing its genome 
sequence with known virus sequences [7]. Most of the existing compu
tational methods to identify virus taxonomy are based on similarities in 
genome structure and organization, the presence of homologous gene 
and protein sequences [8,9,10,11]. Homology based methods require 
higher computational resources, might produce unreliable alignment for 
novel viral species and often require human interpretations [12]. 

For classification of the virus sequences several alignment free su
pervised machine learning classifiers have been proposed e.g., CASTOR 
[13], VirFinder [14], DeepVirFinder [15] etc. However, the existing 
tools notably do not predict hierarchical taxonomic ranks from viral 
sequences across the diverse virus taxa. These methods were bench
marked on limited datasets of certain well characterized virus families. 
CASTOR used the features of restriction fragment length polymorphism 
to train the machine learning models in three virus families. DeepVir
Finder uses a convolutional neural network that learns from viral 
genomic signatures to classify virus sequences from non-virus se
quences. VirFinder uses k-mer (i.e., DNA words of length k) frequency 
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features to train the model using a logistic regression model to 
discriminate virus sequences. For the classification of short meta
genomic reads or contigs into the microbial taxa including viruses, k- 
mer feature is considered as core in some proposed classifiers e.g., 
Kraken [16], Kraken2 [17], KrakenUniq [18], CLARK [19], CLARK-S 
[20] and MetaPhlAn [21]. MetaPhlAn uses clade-specific marker 
genes to assign metagenomic reads to the clades and CLARK uses 
discriminative k-mers of target sequences e.g., genus-level sequences. 
Similar to CLARK, we used enrichment of discriminative k-mers to 
classify taxonomic ranks of viruses using whole genome sequence or 
contigs in VirusTaxo during hierarchical training. K-mer extraction from 
virus sequences does not require prior knowledge of sequence homology 
and coding or non-coding regions at the gene level. Therefore, k-mer 
based approaches could be more effective at detecting taxonomy of 
novel viruses that are distantly related to the known virus sequences. 

Sequencing of virus genomes has become an essential tool in clinical 
research, molecular epidemiology and evolutionary genomics. Meta
genomic or metavirome sequencing contains sequences of novel or 
poorly characterized virus genomes [22]. Unassigned virus sequences 
are required to be classified accurately to their taxonomic ranks and 
such taxonomic assignment can be done from their sequences alone [4]. 
Currently, there is a lack of dedicated bioinformatics tools that are 
optimized for DNA or RNA viruses to assign virus taxonomy from se
quences. Here we have developed VirusTaxo which makes decisions 
based on k-mer overlap (i.e., exact sequence match) of a given sequence 
with discriminative sets (mutually exclusive sets) of k-mers of known 
virus genera. VirusTaxo was trained on 6950 virus genomes that 
encompass 129 families, and 682 genera of DNA and RNA viruses which 
might help to discover the taxa of uncharacterized viruses that are 
related to known virus genera. VirusTaxo outperformed other state-of- 
the-art machine learning methods to accurately assign taxonomic 
ranks in both DNA and RNA viruses. VirusTaxo has been benchmarked 
against CLARK [19], Kraken2 [17] and DeepVirFinder [15] to classify 
virus sequences from metagenomic datasets and outperformed in terms 
of detecting higher number of viruses in diverse genera. VirusTaxo was 
applied on 6176 whole and partial genome sequences of SARS-CoV-2 
and was able to predict its taxonomy accurately in all cases. The 
source code of VirusTaxo is publicly available to create and train a 
classifier on labeled virus sequences. A web application of VirusTaxo is 
also available for users to predict the taxonomic rank of viruses from 
genome sequence or contig. 

2. Results 

2.1. Classification of taxonomic ranks of viruses using VirusTaxo 

We trained VirusTaxo using DNA and RNA virus genomes to predict 
their hierarchical taxonomic ranks into order, family and genus. Total 
4421 DNA and 2529 RNA virus genomes were used to train the Viru
sTaxo models that belong to 402 DNA and 280 RNA virus genera 
(Supplementary file). For the hierarchical classification of virus taxo
nomic ranks, we trained classifiers at each layer of the taxonomic tree. 
(Fig. 1) illustrates an example of total 8 classifiers that were trained for 2 
orders, 5 families with 17 genera at three taxonomic ranks. For selecting 
a classification method to train the VirusTaxo models, we benchmarked 
the accuracy of k-mer enrichment method used in CLARK along with 
random forest, gradient boosting, multilayer perceptron, k-nearest 
neighbors. During method selection, we used a smaller pilot dataset 
randomly subsampled from the entire RefSeq complete virus genomes 
(see method) and the pilot dataset allowed us to expedite the bench
marking of methods and parameters using lower computational re
sources. In both DNA and RNA virus datasets, k-mer enrichment 
outperformed other methods at all taxonomic ranks (e.g., order, family, 
and genus) whereas k-nearest neighbors and gradient boosting showed 
the lowest accuracies in DNA and RNA models respectively (Table S1). 
For the DNA dataset, k-mer enrichment showed on average 1% (order), 
6% (family), and 16% (genus) improvement over other four methods. 
For RNA datasets, k-mer enrichment showed an average of 5.5% (order), 
13% (family), and 27% (genus) improvement over other methods. The 
accuracies of all methods we have tested are relatively lower in RNA 
dataset compared to DNA dataset. On average RNA virus genome is 5 
times smaller than DNA virus and has 43% (2529/4421) less number of 
species genomes available compared to DNA virus. Potentially for those 
reasons, higher accuracies could not be achieved in RNA models than 
DNA models across all the methods. Therefore, we selected the k-mer 
enrichment method in VirusTaxo with additional modifications such as 
using it hierarchically, optimizing k-mer length, applying entropy cut
off, and reducing database size for virus sequence classification. 

2.2. Benchmarking of VirusTaxo parameters 

DNA and RNA virus genomes are different in their genome sizes and 
sequence compositions [1]. The median size of the DNA and RNA virus 
genomes are 40,562 bp and 4556 bp respectively. We extracted k-mers 
using different ranges of k-mer lengths e.g., 17–26 bp and 13–22 bp for 
DNA and RNA viruses respectively and benchmarked the accuracy of 
models for different k-mer lengths using the pilot dataset. The accuracies 

Fig. 1. Multi-class hierarchical classification 
model. Example of a hierarchical structure of 
virus taxonomic ranks. Classifier(s) are 
added at each level of taxonomic ranks. To 
build the VirusTaxo models, k-mers are 
extracted from the genomes of each class. 
Unique k-mers are then indexed and stored 
in a database to find the k-mer overlap with 
the query sequence. To measure the confi
dence of prediction, VirusTaxo provides a 
ranking of genus prediction using softmax 
probability and entropy scores (see 
methods).   
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of DNA and RNA models varied at different k-mer lengths. K-mer lengths 
of 21–23 bp showed the highest accuracies in order (99.57%), family 
(98.27%), and genus (94.81%) level in the DNA model (Fig. 2a). At the 
family level, the accuracies did not change between the k-mer lengths of 
20–26 bp. For the RNA model, k-mer length of 17 bp provided the 
maximum accuracies where the accuracies fluctuated with different k- 
mer lengths (Fig. 2a). This suggests for a given dataset, k-mer length 
determines the number of distinct genomic k-mers that will be the most 
discriminative. Our analysis shows that with the increase of k-mer 
length accuracy increases and after a point, accuracy starts to decrease. 
At a fixed k-mer length, the accuracies also reduced with the increase of 
minimum frequency threshold (MFT) of k-mers in both models where 
MFT value of 1 gave the highest accuracies (Fig. 2b) (see methods). 
This is suggesting that unique k-mers in each class contribute signifi
cantly to discriminate between classes. Using the pilot dataset, we tested 

the accuracies of DNA and RNA models to predict order, family, and 
genus by using test datasets that contain one species genome from each 
genus. From the pilot dataset, 231 DNA and 142 RNA genomes were 
randomly selected from each genus to generate test datasets and we 
repeated the testing process 10 times. The average accuracies were 99% 
(order), 98% (family) and 95% (genus) for the DNA viruses and 97% 
(order), 96% (family) and 82% (genus) for the RNA viruses (Fig. 2c). 
Because of fewer branches and larger sample sizes in the higher taxo
nomic levels, order level accuracies were highest in both models and the 
accuracies dropped gradually from order to genus level. To build the 
final prediction models using the entire RefSeq complete virus genomes 
(RNA = 2529; DNA = 4421), we used k-mer lengths of 21 bp (DNA vi
ruses), 17 bp (RNA viruses) and 20 bp (combining DNA and RNA vi
ruses) with MFT value of 1 using the entire dataset (see methods). Lone 
taxonomic ranks with only one order, family or genus but with more 

Fig. 2. Accuracy of VirusTaxo for order, 
family, and genus level classification in the 
pilot dataset. a) Changes of accuracies at 
different k-mers. For DNA and RNA datasets, 
21 and 17 k-mer lengths provided the high
est accuracy which are highlighted in gray 
dotted lines. b) Accuracies with different 
minimum frequency thresholds (MFT) at k- 
mer length of 21 bp and 17 bp in DNA and 
RNA viruses respectively. c) Accuracies of 
VirusTaxo for 10 rounds of testing of DNA 
and RNA models. For each iteration of hi
erarchical testing, one species genome per 
genus was randomly selected from the DNA 
and RNA datasets.   
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than one species genomes were also included for the genus level pre
dictions. The singletons with one species genome per genus were 
removed. VirusTaxo estimates the specificity of prediction using 
normalized entropy of probability distribution across taxonomic ranks. 
Higher entropy (>0.5) is considered as undetected and lower entropy 
(≤0.5) is used to provide level of certainty at the genus level prediction. 
In the final prediction models, accuracy increases with entire RefSeq 
data, 1.4% increase in DNA and 8.38% in RNA model compared to the 
models trained using pilot data because of including more genomes in 
the training. The final model was trained on 402 DNA and 280 RNA 
virus genera and have an average accuracy of 90.38% (RNA), 96.2% 
(DNA) and 92.5% (DNA and RNA) where on average 11.3% of sequences 
remained undetected. Average accuracy for each model was calculated 
by repeating the training (with 80% of sequences) and testing (with 20% 
of sequences) process five times. 

2.3. Benchmarking of VirusTaxo using metagenomic datasets 

We predicted the accuracies of VirusTaxo, CLARK and Kraken2 using 
three metavirome (SRR10281034, SRR10281038, SRR12756394) [23] 
and a metatranscriptome (SRR10971381) [6]. We assembled the met
agenomic reads using MEGAHIT [24] following quality trimming by 
Trimmomatic [25]. The resultant metagenomic contigs were used to 
classify virus sequences by different methods (Table 1). 

VirusTaxo’s combined database with DNA and RNA sequences 
assigned taxonomic ranks of >30% of the metagenomic contigs which is 
an about 100-fold increase in assigning taxonomy compared to CLARK 
(0.60%), Kraken2 with MiniKraken2 database (0.033%), and Kraken2 
with virus database (0.27%) (Table 1). DeepVirFinder does not classify 
taxonomy but predicts virus sequences. DeepVirFinder identified >30% 
of the metagenomic contigs as virus sequences across four metagenomic 
libraries. A significant portion of the sequences classified by VirusTaxo 
was also predicted as virus sequence in DeepVirFinder (VirusTaxo =
137,370, DeepVirFinder = 145,917 and intersect = 46,893; Fisher’s 
exact test p-value = 2.08853e-33). This is suggesting that a large pro
portion of virus sequences were not assigned to their taxonomy by 
CLARK and Kraken2 despite using their latest database (see Methods). 
By default, CLARK (k-mer = 31 bp) and Kraken2 (k-mer = 35 bp) use 
larger k-mer sizes whereas VirusTaxo used an optimized k-mer length of 
20 bp for its combined model with RNA and DNA sequences. VirusTaxo 
assigned taxonomic ranks of significantly higher numbers of the contigs 
from metaviromes and metatranscriptomes. 

2.4. Benchmarking of computational performance of VirusTaxo 

For calculating the Central Processing Unit (CPU) time consumption 
and Random Access Memory (RAM) usage, we used SRR10281034 
metavirome library which has 122,545 contigs. We utilized a single 
thread on a dedicated computer for all the methods (see Methods). 
Program running time is represented in wallclock CPU seconds 
(Table 2). Compared to CLARK and Kraken2, VirusTaxo has a smaller 
database size of 4.6 GB but requires higher running time and RAM usage. 
DeepVirFinder took significantly much longer time (18 h) to finish the 
prediction. 

2.5. Predicting hierarchial taxonomy of SARS-CoV-2 from metagenomic 
assembly using VirusTaxo 

SARS-CoV-2 belongs to Betacoronavirus genus, Coronaviridae family 
and Nidovirales order. (Fig. 3a) illustrated the taxonomic ranks of SARS- 
CoV-2 and its hierarchical taxonomic classification by VirusTaxo. The 
reference genome (MN908947.3) of SARS-CoV-2 was generated from 
SRR10971381 sequencing library and assembled by MEGAHIT [24] to 
identify the family of this novel virus that caused the recent pandemic 
[6]. We downloaded the SRR10971381 library and assembled it with 
MEGAHIT using the approach described here [6]. The longest contig 
generated by MEGAHIT was 29,868 bp long and was used as a query 
sequence in VirusTaxo. To treat SARS-CoV-2 as a novel virus species, we 
removed its genome from our training dataset to train the RNA model of 
VirusTaxo. VirusTaxo model predicted the 29,868 bp MEGAHIT contig 
belongs to Nidovirales order, Coronaviridae family, Betacoronavirus genus 
(Rank: 1, Entropy: 0.07, Softmax probability: 0.95) (Fig. 3b). Accurate 
assignment of order, family and the ranking of the closest genus by 
VirusTaxo indicating that the whole process of identifying taxonomy of 
novel or uncharacterized viruses can be automated without the need for 
sequence alignment and human interpretation of alignment data given 
that close relatives of the uncharacterized viruses are present in the 
database. 

2.6. The effect of contig length in VirusTaxo classification 

We obtained 6176 de novo assemblies of SARS-CoV-2 genome that 
were assembled using eight different assemblers [26]. We used BLASTn 
[27] against a database made of MN908947.3 sequence to obtain the 
SARS-CoV-2 contigs and selected the largest contig per assembly. These 
sequences contain full and partial genome assemblies and have diverse 
variants due to differences in virus samples and assemblers. This dataset 
contains partial genome assemblies with minimum contig length of 30 
bp and 4536 assemblies had <75% of the genome constructed (Fig. 3c). 
Despite the partial genomes provided and variants present in those se
quences, VirusTaxo RNA model correctly predicted Nidovirales as the 
order, Coronaviridae as the family, and Betacoronavirus as the genus for 
all of the assemblies. In comparison to VirusTaxo, CLARK detected 
99.77% (6162/6176) of the contigs and Kraken2 with MiniKraken2 
database detected 3521 (57.01%), and Kraken2 with virus database 
detected 6168 (99.87%) contigs as Betacoronavirus. Thus VirusTaxo, 
CLARK, and Kraken2 that were trained on the virus genomes detected 
the Betacoronavirus contigs and were not affected by contig lengths. For 

Table 1 
Virus sequences detected by different methods in metagenomic data.  

Libraries # contigs VirusTaxo CLARK (virus 
db) 

Kraken2 (MiniKraken2 
db) 

Kraken2 (virus 
db) 

DeepVirFinder 
(DVF) 

Overlap between VirusTaxo and 
DVF 

SRR10281034 122,545 39,856 
(32.52%) 

1268 (1.03%) 18 (0.01%) 117 (0.10%) 38,652 (31.54%) 10,232 

SRR10281038 100,894 35,713 (35.4%) 773 (0.77%) 42 (0.04%) 522 (0.52%) 33,231 (32.94%) 13,105 
SRR12756394 196,745 55,874 (28.4%) 746 (0.38%) 115 (0.06%) 519 (0.26%) 66,548 (33.82%) 21,750 
SRR10971381 23,720 5927 (24.99%) 51 (0.22%) 5 (0.02%) 47 (0.20%) 7486 (31.56%) 1806 

Metagenomic contigs are classified using different methods where db means the database. 

Table 2 
Computational performance of VirusTaxo and other tools.  

Tools Database size Peak RAM usage Running time 

VirusTaxo 4.6 GB 24.5 GB 4 m 29.423 s 
Kraken2 (MiniKraken2) 8 GB 5.9 GB 0 m 9.600 s 
Kraken2 (virus) 496.5 MB 3.1 GB 0 m 8.989 s 
CLARK 79.1 GB 13.8 GB 0 m 39.458 s 
DeepVirFinder Null 3.2 GB 1086 m 8.795 s 

Metavirome dataset (SRR10281034) containing 122,545 contigs was used for 
benchmarking computational performance. 
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the prediction of the taxonomic ranks online using VirusTaxo, a web 
application has been provided with trained models for virus classifica
tion (Fig. 3d). 

3. Discussion 

The International Committee on Taxonomy of Viruses (ICTV) clas
sifies viruses into their taxonomic ranks primarily based on phenotypic 
properties [28]. However, the ICTV has continually updated its 
approach to virus taxonomy through incorporation of newer technolo
gies including genome sequence as a property needed for classification 
[29]. Genomic sequences of viruses show their evolutionary relation
ships and provide an opportunity to detect virus taxonomy especially for 
those that lack phenotypic data [3]. Developing and utilizing automated 
computational methods will facilitate the taxonomic assignment of 
novel or uncharacterized viruses efficiently and will open the possibility 
to discover new taxa solely based on the genomic sequences. Supervised 
machine learning methods can learn from the patterns of existing virus 

genomes and their taxonomic ranks to assign taxa of novel viruses 
automatically. Here we proposed VirusTaxo, a machine learning archi
tecture to classify taxonomic ranks (e.g., order, family and genus) using 
virus genome. Virus taxonomic tree is hierarchically structured with 
taxonomic ranks at different levels which is challenging for the classi
fiers to maintain the accuracy towards the low-level taxa. K-mer features 
of DNA have been shown to contain information about sequence 
composition and sequence evolution [30,31]. Using k-mer features 
VirusTaxo obtained >93% overall accuracy in classification at each 
taxonomic rank. We have shown that RNA and DNA virus classification 
parameters (e.g., k-mer length) could be different because these two 
sequence sets are different in their size and composition. Viruses have 
some exceptions in taxonomic classification by genome sequence and 
are not always congruent between phenotypic and evolutionary ap
proaches [28]. Despite the challenges in classifying viruses from 
genome, VirusTaxo showed significant improvement in predicting 
smaller contigs and classifying taxonomy of more virus sequences from 
metagenomic datasets compared to other state-of-the-art methods e.g., 

Fig. 3. Benchmarking of VirusTaxo for 
SARS-CoV-2 genomes. a) Schematic repre
sentation of hierarchical prediction of taxo
nomic ranks of SARS-CoV-2 genome using 
VirusTaxo. VirusTaxo classified the taxo
nomic ranks of SARS-CoV-2 for its order, 
family and genus which are highlighted in 
red color. b) Ranking by Softmax probability 
at genus level prediction for the 
SRR10971381 assembly. c) Distribution of 
fraction of genome assembled in 5793 as
semblies of SARS-CoV-2 genome. d) 
Screenshot of VirusTaxo web interface (htt 
ps://omics-lab.com/virustaxo). (For inter
pretation of the references to color in this 
figure legend, the reader is referred to the 
web version of this article.)   
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CLARK and Kraken2. 
High-throughput sequencing of metagenomes or metaviromes can 

identify the true diversity of viruses in a particular environment sample. 
Metagenomic sequence assembly creates full or partial genomes of 
thousands of new viruses that when classified, will contribute to the 
formation of new virus taxa. Large scale metagenomic studies showed 
that the vast majority of the identified viruses were unrelated to those in 
known viruses [32]. Novel viruses that do not have close relationships at 
the genome sequences with existing taxa pose a particular problem to 
classify their taxonomic rank using supervised machine learning 
methods. In such a scenario, the taxonomic assignment could be arbi
trary and therefore we introduced probabilistic ranking to assess the 
certainty using softmax and entropy scores in VirusTaxo. Since virus 
taxonomy evolves with the addition of new viruses, taxonomy classifi
cation methods can be updated over time with new sequences and their 
taxa. With an increased understanding of newer taxa, machine learning 
methods can be scaled to learn about those genomes and classify un
known viruses. Overall, our classification results obtained from meta
genomic data and SARS-CoV-2 genome assemblies indicate that 
VirusTaxo is readily capable of distinguishing between viruses 
belonging to different classes of taxa. 

4. Methods 

4.1. Datasets 

4.1.1. Pilot dataset 
RefSeq genomes of all RNA and DNA viruses were downloaded from 

the NCBI virus database [33]. Taxonomic classification of the viruses 
was obtained from the International Committee on Taxonomy of Vi
ruses, ICTV Master Species List 2019.v1 release [34]. We chose orders 
with at least two families, families with at least two genera, and genera 
with at least three species to ensure sufficient genomes for the RNA and 
DNA virus classifier models. Pilot dataset contains 2561 DNA and 1480 
RNA virus genomes which were used to train the VirusTaxo models that 
belong to 231 DNA and 142 RNA virus genera. 

4.1.2. Entire RefSeq dataset of viruses 
We used all complete virus genomes from NCBI RefSeq consisting of 

4421 DNA and 2529 RNA virus genomes. Singletons with one sequence 
per genus were removed. The summary of the selected datasets is listed 
in (Table 3). The detailed taxonomic information of the viruses used in 
the final model is added in the Supplementary file. 

4.1.3. Metagenomic datasets 
Metavirome (SRR10281034, SRR10281038, SRR12756394) [23], 

SARS-CoV-2 metatranscriptome (SRR10971381) [6] datasets were used 
in benchmarking with metagenomic classifiers. 

4.2. Hierarchical classification architecture of VirusTaxo 

VirusTaxo uses a top to bottom approach for the classification of 
order, family and genus of a virus sequence. For m and n number of order 
and family respectively, there will be m numbers of family classifiers 
under respective orders in the 2nd layer and n numbers of genus clas
sifiers under respective families in the 3rd layer. There will be a total 
number of classifiers = 1 + m + n in each model. In addition, taxonomic 

Table 3 
Summary of RNA and DNA virus genome sequences.   

DNA genomes RNA genomes 

Family 46 83 
Genus 402 280 
Total species genomes 4421 2529  

1    function Train(dataset, k, MFT) 
2        create empty lists of kmer B 
3        for each (sequence, class) in dataset do 
4            kmers ← extract(sequence, k) 
5            B[class].add(kmers) 
6        end for 
7 
8        for each class in B do 
9            S ← Set of unique kmers in B[class] 
10           for each kmer in S do 
11               if B[class].count(kmer) < MFT then 
12                   B[class].remove(kmer) 
13               end if 
14 end for
15 end for
16
17 for each class in B do
18 keep only the kmers in B[class] that don't exist in any other 
class
19 end for
20
21 save B
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ranks with only one order, family or genus were also included for genus 
level prediction. We trained the classifiers at different levels of the tree 
by utilizing Breadth First Search (BFS) [35] graph traversal algorithm 
for both DNA and RNA datasets. (Fig. 1) illustrates an example of hi
erarchical classification by VirusTaxo where the order classifier (OC) in 
the root is classifying the genomes between two orders (e.g., Order-1 and 
Order-2). Then all the genomes in an order are split into corresponding 
families to train the family level models. Two family classifiers (e.g., FC- 
1 and FC-2) that belong to 2 orders classifying 5 families. Similarly, 5 
genus classifiers were built to classify the genomes into 17 genera. 

4.3. Hierarchical prediction of taxonomic ranks 

We pass a genome sequence through the order classifier and we get 
the decision for an order. Then we pass it through the family classifier 
under the predicted order. Finally to get the genus, we go to the genus 
classifier under the predicted family. 

4.3.1. Training algorithm 
A dataset and two parameters are required to train the VirusTaxo 

multi-class classification model. These parameters are k and the mini
mum frequency threshold (MFT) of k-mers. Here are the training steps:  

1. Create empty bags for each class.  
2. Iterate over each sequence in the dataset and follow the steps 

mentioned below.  
a. Generate k-mers by extracting substrings of k bp with k-1 bp 

overlaps from the sequence.  
b. Add extracted k-mers to a bag in accordance with the class.  

3. Discard the k-mers from each bag if the frequencies of the k-mers are 
less than MFT.  

4. Keep only the k-mers in each bag that don’t occur in any other bag to 
build discriminative (mutually exclusive) bags.  

5. Save the bags as a model. 

Training pseudocode 

4.3.2. Prediction algorithm 
For a given input sequence, model and k, the following steps are 

performed to predict the rank and class.  

1. Generate k-mers (same k-mer generation technique that was 
described in the training part) from the given input sequence.  

2. Count the overlap of k-mers between the input sequence derived k- 
mers and bag of k-mers for each class.  

3. Predict the corresponding class as an output for which the overlap 
count is maximum. 

Prediction pseudocode 

4.3.3. Determination of confidence level of genus prediction 
Firstly, we find the overlap counts of the input sequence with every 

genus. Suppose, there are n genus and x_(1), x_(2), …, x_(n) denote the 
overlap count with n genus. We find the probability distribution using x_ 
(1), x_(2), …, x_(n) with the help of the softmax function. The formula of 
softmax function is given below: 

p(xi) =
exi

∑n
k=1exk 

We rank genus according to the descending value of probabilities. 
After getting the probability values, we are interested to find how much 
of our first ranking is reliable. For this, we calculate normalized entropy 
value which ranges within [0.0,1.0]. The formula of normalized entropy 
is given value: 

normalized entropy = −
∑n

i=1

p(xi)log2(p(xi) )

log2(n)

When the probabilities are more or less equally distributed across 
genera, then it is difficult to predict a specific genus. In that scenario, the 
normalized entropy value will be close to 1.0. On the other hand, if the 
probabilities distribution for one genus is high and for the rest of all are 
low, then the entropy value will be close to 0.0. 

4.4. Benchmarking of VirusTaxo using metagenomic classifiers 

We used CLARK (v1.2.6.1), Kraken2 (v2.1.2) and DeepVirFinder 
(v.1) to predict the taxonomy from metagenomics datasets (Table S2). 
CLARK was used against the virus database with ‘clarkdb viruses’. For 
Kraken2, ‘minikraken2_v2_8GB_201904_UPDATE’ and ‘Viral; 5/17/ 
2021’ database were used. Those tools were run using default parame
ters, unless otherwise mentioned. For DeepVirFinder, score > 90 and the 
p-value < 0.05 is used to detect virus sequences. 

4.5. Benchmarking of machine learning methods 

We compared the performances of VirusTaxo with four other algo
rithms on RNA and DNA virus datasets. We used word2vec encoding 

1 function predict(sequence, model, k)
2 kmers ← extract(sequence)
3 maximum_count, prediction ← 0, null
4 for each class in model do
5 count ← 0
6 for each kmer in kmers do
7 if kmer in model[class] then
8 count ← count + 1
9 end if
10 end for
11 if count > maximum_count then
12 maximum_count, prediction ← count, class
13 end if
14 end for
15 return prediction
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[36] for transforming genome sequences into vectors. To train two 
word2vec models for DNA and RNA datasets, we generated a stream of 
k-mers without changing sequence chronology of k-mers from each 
genome sequence taking 21 bp and 17 bp k-mer lengths respectively. We 
trained word2vec models using fastText [36] using the following 
hyperparameters in (Table 4). After completion of word2vec training, 
we utilize four algorithms (Multilayer perceptron, Random forest, 
Gradient boosting, KNN) one by one in hierarchical classification of RNA 
virus and DNA virus. The hyperparameter details of the four algorithms 
are in (Table 5). Here we randomly choose one species genome from 
each genus to create the test set. 

4.6. Analysis of metagenomic data 

We have downloaded the Metavirome (SRR10281034, 
SRR10281038, SRR12756394), SARS-CoV-2 metatranscriptome 
(SRR10971381) reads from NCBI GEO datasets. Sequencing reads were 
adaptor and quality trimmed using the Trimmomatic program (v.0.39) 
[25]. The remaining reads were assembled de novo using MEGAHIT 
(v.1.2.9) with default parameters. The contigs were used to predict virus 
taxonomy. 

4.7. CPU and RAM usage 

We used the same procedure described by [26] to measure CPU time 
and peak RAM usage. We used 32 cores (64 threads) to compare tax
onomy classification tools in a AMD EPYC 7502P 2.5 Ghz, 32 cores, 256 
GB RAM. 
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